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Abstract

This paper provides a method for the analysis of the spatial and temporal dif-
fusion of shocks in a dynamic system. We use changes in real house prices within
the UK economy at the level of regions to illustrate its use. Adjustment to shocks
involves both a region speci�c and a spatial e¤ect. Shocks to a dominant region -
London - are propagated contemporaneously and spatially to other regions. They
in turn impact on other regions with a delay. We allow for lagged e¤ects to echo
back to the dominant region. London in turn is in�uenced by international devel-
opments through its link to New York and other �nancial centers. It is shown that
New York house prices have a direct e¤ect on London house prices. We analyse
the e¤ect of shocks using generalised spatio-temporal impulse responses. These
highlight the di¤usion of shocks both over time (as with the conventional impulse
responses) and over space.
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1 Introduction

This paper provides a method for the analysis of the spatial and temporal di¤usion of
shocks in a dynamic system. We use changes in real house prices within the UK economy
at the level of regions to illustrate its use. Adjustment to shocks involves both a region
speci�c and a spatial e¤ect. Shocks to a dominant region - London - are propagated
contemporaneously and spatially to other regions. They in turn impact on other regions
with a delay. We allow for lagged e¤ects to echo back to the dominant region. London
in turn is in�uenced by international developments through its link to New York and
other �nancial centers. We analyse the e¤ect of shocks using generalised spatio-temporal
impulse responses. These highlight the di¤usion of shocks both over time (as with the
conventional impulse responses) and over space.
The present paper provides a relatively simple and consistent approach to modelling

spatial and temporal adjustments quantitatively.1 We approach the analysis from the
perspective of recent developments in the literature on panel data models with a spatial
dimension that manifests itself in the form of cross sectional dependence. One of the most
important forms of cross section dependence arises from contemporaneous dependence
across space and this is the primary focus of the spatial econometrics literature. This
spatial dependence (Whittle, 1954) approach models correlations in the cross section by
relating each cross section unit to its neighbour(s). Spatial autoregressive and spatial
error component models are examples of such processes. (Cli¤ and Ord, 1973, Anselin,
1988, Kelejian and Robinson, 1995, Kelejian and Prucha, 1999, 2009, and Lee, 2004).
Proximity, of course, does not have to be limited to proximity in space. Other measures
of distance such as economic (Conley, 1999, Pesaran, Schuermann and Weiner, 2004), or
social distance (Conley and Topa, 2002) could also be employed. In a regional context
proximity of one region to another can depend on transport infrastructure. The ability
to commute easily between two areas is likely to be a much better indication of economic
inter-dependence than just physical closeness.2

Another approach to dealing with cross sectional dependence is to make use of mul-
tifactor error processes where the cross section dependence is characterized by a �nite
number of unobserved common factors, possibly attributable to economy-wide shocks
that a¤ect all units in the cross section, but with di¤erent intensities. With this ap-
proach the error term is a linear combination of a few common time-speci�c e¤ects with
heterogeneous factor loadings plus an idiosyncratic (individual-speci�c) error term. Pe-
saran (2006) has proposed an estimation method that consists of approximating the linear
combinations of the unobserved factors by cross section averages of the dependent and
explanatory variables and then running standard panel regressions augmented with the
cross section averages. An advantage of this approach is that it yields consistent estimates
even when the regressors are correlated with the factors, and the number of factors are
unknown. A maximum likelihood procedure is also suggested by Bai (2009).

1The way in which space and time interact has long been a primary concern of epidemiologists and
regional scientists. For a qualitative analysis of spatio-temporal processes using geographical information
systems, see Peuquet (1994). However, there is also widespread interest in the environmental sciences as
well. For a recent contribution see, for example, Kneib and Fahrmeir (2009). The study of the human
brain through the use of magnetic resonance imaging also involves spatial-temporal modeling. See, for
example, Gössl et al. (2001), and Fahrmeir and Gössl (2002).

2At the industry level interdependency between industries and �rms are more likely to re�ect patterns
of intermediate input usage rather than physical proximity. See Horvath (1998, 2000) and Holly and
Petrella (2008).
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More recently Pesaran and Tosetti (2009) have sought to combine the insights of these
two approaches and propose a panel model in which the errors are a combination of a
multifactor structure and a spatial process. To achieve this a distinction is drawn between
what is termed weak and strong cross section dependence. (Chudik, Pesaran and Tosetti,
2009). A process is said to be cross sectionally weakly dependent at a given point in time,
if its weighted average at that time converges to its expectation in quadratic mean, as
the cross section dimension is increased without bounds. If this condition does not hold,
then the process is said to be cross sectionally strongly dependent. The distinctive feature
of strong correlation is that it is pervasive, in the sense that it remains common to all
units however large the number of cross sectional units. Signi�cantly, spatial dependence
typically entertained in the literature turns out to be weakly dependent in this framework.
Holly, Pesaran and Yamagata (2009) model house prices at the level of US States where
there is evidence of signi�cant spatial dependence even when the strong form of cross
sectional dependence has been swept up by the use of cross sectional averages. If we were
to extend the sample by including regions or countries in Europe we would still expect
that the spatial e¤ects of New York State would be con�ned to its neighbouring states
and not extend to Europe. By contrast common factors coming from the aggregate US
economy could still have pervasive e¤ects for regions of Europe.
As compared to purely spatial or purely factor models analysed in the literature, the

spatio-temporal model estimated in this paper uses London house prices as the common
factor and then models the remaining dependencies (contemporaneously or with a lag)
conditional on London house prices. This allows us to consistently estimate separate
conditional error correcting models for the di¤erent regions in the UK, which we then
combine with a model for London to solve for a full set of spatio-temporal impulse response
functions. Two alternative speci�cations are considered for London house prices, one
speci�cation that only depends on lagged London and neighbouring house price changes,
and another which also depends on New York house prices.
While we are able to demonstrate that London is a dominant region for the rest of

the UK, it is not immediately obvious why it should be uniquely so. One possibility we
consider is that London is the largest city in Europe but more signi�cantly is a major
world �nancial centre. Developments in world �nancial markets can impact directly on
the London housing market. Because London�s traditional role as a �nancial and trading
centre and the attraction that it has for economic migration of highly skilled workers,
residential prices re�ect both local factors in the UK but also movements abroad. In
particular, there is a well established international market in residential property in which
London along with New York plays a role. Our test results clearly show that New York
house prices are signi�cant drivers of house prices in the UK, but only through London.
We also explored the possibility that Paris house prices could be one of the drivers of
London house prices but found little evidence in its support.
It is important to note that the focus of our analysis di¤ers from many others where

the intention is to understand what determines regional house prices in terms of income,
housing costs and other �xed factors to explain di¤erences in regional house prices.3 Al-
though our approach does not preclude the inclusion of observable covariates such as
incomes and interest rates we have focussed on the dispersion of house price shocks, con-
ditioning on a dominant region (London) and neighbourhood e¤ects, so the formulation is
particularly parsimonious. It can be seen as a �rst step towards a more structural under-

3See, for example, Ashworth and Parker (1997), Cameron and Muellbauer (1998), Gallin (2006), and
Holly et al. (2009).
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standing of the inter-play of house price di¤usion and the evolution of the real economy
nationally and regionally.4

There have been a number of other studies that have considered the spatial di¤usion
of house prices. One of the �rst was Can (1990). He studied what he calls �neighbourhood
dynamics�by using a hedonic model of house prices where the price of a house depends
on a series of characteristics, and incorporates both spatial spillover e¤ects and spatial
parametric drift. More recently Fingleton (2008) has developed a GMM estimator for
a spatial house price model with spatial moving average errors. However, both of these
studies con�ne themselves to the cross section dimension and do not consider the adjust-
ment of prices over time. Studies of house prices that do consider both dimensions are
van Dijk et al. (2007) and Holly et al. (2009). These studies develop a model that al-
lows for stochastic trends, cointegration, cross-equation correlations and the latent-class
clustering of regions. Dijk et al. apply their model to regional house prices in the Nether-
lands. They pick up a �ripple�e¤ect, by which shocks in one region are propagated to
other regions. Holly et al. consider the evolution of real house prices and real disposable
incomes across the 48 U.S. States and after allowing for unobserved common factors �nd
statistically signi�cant evidence of autoregressive spatial e¤ects in the residuals of the
cointegrating relations. Chudik and Pesaran (2009a) show that signi�cant improvements
in �t is achieved if Holly et al.�s regressions are augmented with spatially weighted cross
sectional averages.
Conventional impulse response analysis traces out the e¤ect of a shock over time.

However, with a spatial dimension as well, dependence is both temporal and spatial
(Whittle, 1954). Our results suggest that the e¤ects of a shock decay more slowly along
the geographical dimension as compared to the decay along the time dimension. For
example, the e¤ects of a shock to London on itself, die away and are largely dissipated
after two years. By contrast the e¤ects of the same shock on other regions takes much
longer to dissipate, the further the region is from London. This �nding is in line with
other empirical evidence on the rate of spatial as compared to temporal decay discussed
in Whittle (1956), giving the examples from variations of crop yields across agricultural
plots, �ood height and responses from population samples.
The rest of the paper is set out as follows: In Section 2 we propose a model of house

price di¤usion where we distinguish between the dominant and the non-dominant regions.
In Section 3 we show how the individual models of regional house prices that have been
treated separately for estimation purposes can be brought together and used for impulse
response analysis along the time as well as the spatial dimensions. We also consider an
extension of the basic model to allow for the e¤ects of external shocks in the form of New
York house prices. In Section 4 we report some empirical results using quarterly regional
real house price data for the UK over the period 1974q1-2008q2. Finally, in Section 5 we

4Another branch of the literature explores the transmission of shocks in real estate markets including
both residential and commercial property both within countries and across national borders. For example,
Case et al. (2000) show that correlations between international real estate markets are high, given the
degree to which they are segmented. They attribute a substantial amount of the correlation across world
property markets to GDP which is correlated across countries. Herring and Wachter (1999) have pointed
out that the 1997 Asian crisis was characterized by a collapse in real estate prices and a consequent
weakening of the banking system before exchange rates came under attack. The essential link was that
the real estate collapse impacted very negatively on the balance sheets of banks. Herring and Wachter
point to a strong correlation between real estate cycles and banking crisis across a wide variety of
countries. Bond, Dungey and Fry (2006) have also considered the transmission of real estate shocks
during the East Asian crisis and the role they played in �nancial contagion.
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draw some conclusions.

2 A Price Di¤usion Model

Suppose we are interested in the di¤usion of (log) prices, pit, over time and regions indexed
by t = 1; 2; :::; T and i = 0; 1; :::; N and we have a priori reason to believe that one of
the regions, say region 0, is dominant in the sense that shocks to it propagate to other
regions simultaneously and over time, whilst shocks to the remaining regions has little
immediate impact on region 0, although we do not rule out lagged e¤ects of shocks from
regions i = 1; 2; ::; N to region 0. This is an example of a �star�network within which
each region can be viewed as a node. A �rst order linear error correction speci�cation is
given by5

�p0t = �0s(p0;t�1 � �ps0;t�1) + a0 + a01�p0;t�1 + b01��ps0;t�1 + "0t (2.1)

and for the remaining regions

�pit = �is(pi;t�1 � �psi;t�1) + �i0(pi;t�1 � p0;t�1) + ai
+ai1�pi;t�1 + bi1��p

s
i;t�1 + ci0�p0t + "it; (2.2)

for i = 1; 2; :::; N . �psit denotes the spatial variable for region i de�ned by

�psit =
NX
j=0

sijpjt, with
NX
j=0

sij = 1; for i = 0; 1; :::; N: (2.3)

The weights sij � 0 can be set a priori, either based on regional proximity or some
economic measure of distance between regions i and j. In the empirical application we
use a contiguity measure where sij is equal to 1=ni if i and j share a border and zero
otherwise, with ni being the number of neighbors of i. �psit can be viewed as a local average
price for region i. The weights sij can be arranged in the form of a spatial matrix, S, which
is row-standardized, namely S�N+1= �N+1, where �N+1 is an (N +1)� 1 vector of ones.
Note also that when S captures contiguity measures its column norm will be bounded in
N , namely that �Ni=0 sij < K, for all j; and as shown in Chudik and Pesaran (2009b),
conditional on the dominant unit the remaining spatial dependence will be weak and
conditional (on London) pair-wise dependence of the regions vanishes if N is su¢ ciently
large.
The price equations are allowed to be error correcting, although whether they are is an

empirical issue. In principle, the speci�cation of the error correcting equations depends
on the number of the cointegrating relations that might exist amongst the house prices
across theN+1 regions. To avoid over-parametrization in the above speci�cations we have
opted for relatively parsimonious speci�cations where London prices are assumed to be
cointegrating with the average prices in the neighbourhood of London, �ps0t, whilst allowing
for prices in other regions to cointegrate with London as well as with the neighbouring
regions. In the case where prices cointegrate across all pairs of regions with the coe¢ cients
(1;�1); it is easily seen that prices of each region must also cointegrate with prices of the
neighbouring regions. It is interesting to note that the reverse is also true, namely if prices
in each region cointegrate with prices of the neighbouring regions with the coe¢ cients

5In the empirical application we allow for the possibility that the dynamics are of a higher order.
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(1;�1), then all price pairs would be cointegrating. Our error correcting speci�cations
can therefore be justi�ed as a parsimonious representation of pair-wise cointegration of
prices across regions. The empirical validity of such an approximation for modelling of
regional house prices in the UK will be investigated below.
Finally, note that the price change in the dominant region, �p0t, appears as a con-

temporaneous spatial e¤ect for the ith region. But there is no contemporaneous local
average price included in the equation for �p0t. Implicit in the above speci�cation is
that conditional on the dominant region�s price variable and lagged e¤ects the shocks,
"it, are approximately independently distributed across i. The assumption that ��p0t, is
weakly exogenous in the equation �pit, i = 1; 2; :::; N can be tested using the procedure
advanced by Wu (1973), which can also be motivated using Hausman�s (1978) type tests.
Following Wu�s approach denote the OLS residuals from the regression of the model for
the dominant region by

"̂0t = �p0t � �̂0s(p0;t�1 � �ps0;t�1)� â0 � â01�p0;t�1 � b̂01��ps0;t�1;

and run the auxiliary regression

�pit = �is(pi;t�1 � �psi;t�1) + �i0(pi;t�1 � p0;t�1) (2.4)

+ai + ai1�pi;t�1 + bi1��p
s
i;t�1 + ci0�p0t + �i"̂0t + �it;

and use a standard t-test to test the hypothesis that �i = 0 in this regression (for each i
separately). This test is asymptotically equivalent to using Hausman�s procedure which
involves testing the statistical signi�cance of the di¤erence between the OLS and the IV
estimates of (ai; ai1; bi1; ci0), using �p0;t�1 and ��ps0;t�1 as instruments for �p0t in (2.2).
It is clear that the test can only be computed if the instruments are not already included
amongst the regressors of the model for the non-dominant regions. In our set up this is
satis�ed if N > 1. When N = 1; ��ps0;t�1 = �p1;t�1, and ��p

s
1;t�1 = �p0;t�1 and the model

reduces to a bivariate VAR in �p0t and �p1t.

3 Spatio-temporal Impulse Response Functions

Although the regional price model can be de-coupled for estimation purposes, for simula-
tion and forecasting the model represents a system of equations that needs to be solved
simultaneously. We begin by writing the system of equations in (2.1) and (2.2) as

�pt = a+Hpt�1+(A1 +G1)�pt�1 +C0�pt + "t; (3.5)

where pt = (p0t; p1t; :::; pNt)0, a = (a0; a1; :::; aN)0, "t = ("0t; "1t; :::; "Nt)0,

H =

0BBBBB@
�0s 0 � � � 0 0
��10 �1s + �10 0 0 0
...

...
. . .

...
...

��N�1;0 0 � � � �N�1;s + �N�1;0 0
��N0 0 � � � 0 �Ns + �N0

1CCCCCA�
0BBBBB@

�0ss
0
0

�1ss
0
1

...
�N�1;ss

0
N�1

�Nss
0
N

1CCCCCA

A1 =

0BBBBB@
a01 0 � � � 0 0
0 a11 0 0 0
...

...
. . .

...
...

0 0 � � � aN�1;1 0
0 0 � � � 0 aN1

1CCCCCA ; G1 =

0BBBBB@
b01s

0
0

b11s
0
1
...

bN�1;1s
0
N�1

bN1s
0
N

1CCCCCA ; C0 =
0BBBBB@

0 0 � � � 0 0
c10 0 0 0 0
...

...
. . .

...
...

cN�1;0 0 � � � 0 0
cN0 0 � � � 0 0

1CCCCCA ;
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where s0i = (si0; si1; :::; siN). Recall that s
0
i�N+1 = 1. It is therefore, easily veri�ed that

H�N+1 = 0, and hence H is rank de�cient. From this it also follows that one or more
elements of the price vector, pt, must have a unit root.
Solving for price changes we have

�pt = (IN+1 �C0)
�1a+ (IN+1 �C0)

�1�pt�1
+(IN+1 �C0)�1 (A1 +G1)�pt�1 + (IN+1 �C0)

�1"t;

�pt = �+�pt�1+��pt�1 +R"t; (3.6)

where

� = Ra; with R = (IN+1 �C0)�1;
� = RH, � = R(A1 +G1). (3.7)

Since R is a non-singular matrix it follows that � and H have the same rank, and
� will also be rank de�cient (��N+1 = RH�N+1 = 0). Therefore, (3.6) represents a
system of error correcting vector autoregressions in pt. The number of cointegrating or
long run relations of the model depends on the rank of H (or �). The underlying price
speci�cations in (2.1) and (2.2) imply the possibility of at most N cointegrating relations.
For example, if all regional house prices were cointegrated with prices in London, then we
will haveN cointegrating relations. In what follows we denote the number of cointegrating
relations by r (0 � r � N), and write� = ��0 where � and � are (N+1)�r full column
rank matrices. The choice of r is an empirical issue to which we shall return to below.
To examine the spatio-temporal nature of the dependencies implied by (3.6) we �rst

write it as a vector autoregression (VAR)

pt = �+�1pt�1 +�2pt�2 +R"t (3.8)

where �1 = (IN+1 +��
0 + �), and �2 = ��. The temporal dependence of house prices

is captured by the coe¢ cient matrices �1 and �2, and the spatial dependence by R and
the error covariances, Cov("it; "jt) for i 6= j. The temporal coe¢ cients in �1 and �2 are
also a¤ected by the spatial patterns in the regional house prices as we have constrained
the lagged e¤ects and the error correction terms to match certain spatial patterns as
characterized by the non zero values of sij. The above VAR model can now be used for
forecasting or impulse response analysis.
For impulse response analysis it is important to distinguish between two types of

counterfactuals. Assuming that the Wu test of the weak exogeneity of p0t is not rejected,
then it would be reasonable to assume that Cov("0t; "it) = 0; for i = 1; 2; :::; N . In this
case the impulse responses of a unit (one standard error) shock to house prices in the
dominant region on the rest of regions at horizon h periods ahead will be given by

g0(h) = E(pt+h j"0t =
p
�00; It�1 )� E(pt+h jIt�1 )

=
p
�00	hR e0; for h = 0; 1; :::; (3.9)

where It�1 is the information set at time t� 1, �00 = V ar("0t), e0 = (1; 0; 0; :::; 0)0 , and

	h = �1	h�1 +�2	h�2; for h = 0; 1; :::; (3.10)

with the initial values 	0 = IN+1, and 	h = 0, for h < 0.6

6See also Chapter 6 in Garratt et al. (2006).
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To derive the impulse responses of a shock to non-dominant regions we need to allow
for possible contemporaneous correlations across the regions i and j for i; j = 1; 2; :::; N .
This can be achieved using the generalized impulse response function advanced in Pesaran
and Shin (1998). In the present application we would have

gi(h) =
	hR �eip

�ii
; for h = 0; 1; :::; H (3.11)

where ei is an (N + 1) � 1 vector of zeros with the exception of its ith element which is
unity,

� =

0BBBBBBB@

�00 0 0 � � � 0 0
0 �11 �12 � � � �1;N�1 �1N
0 �21 �22 � � � �2;N�1 �2N
...

...
...

. . .
...

...
0 �N�1;1 �N�1;2 � � � �N�1;N�1 �N;N�1
0 �N1 �N2 � � � �N�1;N �NN

1CCCCCCCA
; (3.12)

where �ij = E("it"jt). The elements of � can be estimated consistently from the OLS
residuals, "̂it of the regressions for the individual regions, namely by, �̂ij = T�1�Tt=1"̂it"̂jt,
for i; j = 1; 2; :::; N , and �̂00 = T�1�Tt=1"̂0t"̂0t. With the above speci�cation of �, where
its �rst row and column are restricted, gi(h) = �

�1=2
ii 	hR �ei = g0(h) for i = 0: So the

generalized impulse response function (GIRF) de�ned by (3.11) with � given by (3.12)
is applicable to the analysis of shocks to the dominant and non-dominant regions alike.
The distinction between the two types of regions is captured by the zero-bordered form
of �. The recursive nature of the model with London as the dominant unit identi�es the
e¤ects of shocks to London house prices. But due to the non-zero correlation of shocks
across the remaining regions the e¤ects of shocks to region i 6= 0 is not identi�ed.
It is worth noting that

R = (IN+1 �C0)�1 =

0BBBBB@
1 0 � � � 0 0
c10 1 0 0 0
...

...
. . .

...
...

cN�1;0 0 � � � 1 0
cN0 0 � � � 0 1

1CCCCCA : (3.13)

Also since sii = 0, we have

A1 +G1 =

0BBBBB@
a01 b01s01 � � � b01s0;N�1 b01s0N
b11s10 a11 � � � b11s1;N�1 b11s1N
...

...
. . .

...
...

bN�1;1sN�1;0 bN�1;1sN�1;1 � � � aN�1;1 bN�1;1sN�1;N
bN1sN0 bN1sN1 � � � bN1sN;N�1 aN1

1CCCCCA ; (3.14)

and recalling that�Nj=0sij = 1, then kA1 +G1kr = maxi(jai1j+jbi1j) < K, and kA1 +G1kc =
maxj

�
jaj1j+ �Ni=0 jbi1j sij

�
which is also bounded in N since �Ni=0sij < K, and jai1j and

jbi1j are bounded in N; by assumption.7

7kAkr and kAkc denote row and column matrix norm of A.
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In the context of the IVAR model discussed in Pesaran and Chudik (2009a,b), the
spatio-temporal aspects of the underlying di¤usion process are characterized by the co-
e¢ cient matrices R, �; �1 and �2. In the present application, due to the dominance of
region 0, we have

kRkc = 1 + �Ni=1 jci0j = O(N); (3.15)

and the column norm of R is unbounded in N . As shown in Pesaran and Chudik the
dominant region can be viewed as a common factor for the other regions, and conditional
on p0t, the cross dependence of pit across i = 1; 2; :::; N will be weak and not allowing
for it at the estimation stage can only a¤ect e¢ ciency which will become asymptotically
negligible when N is su¢ ciently large.
In cases where N is relatively small (as in the empirical application that follows),

the estimation of the conditional models will be less e¢ cient as compared to the full
maximum likelihood estimation, treating all the equations of the model simultaneously.
But such an estimation strategy is likely to be worthwhile only if N is really small, say
5 or 6. Even for moderate values of N the number of parameters to be estimated can be
quite large compared to T (the time dimension) which could adversely a¤ect the small
sample properties of the maximum likelihood estimates.
Also, one can clearly generalize the model by introducing other (observed) national

or international factors into the equation for the dominant region such as real disposable
income (which need not be region speci�c), interest rates, or house prices in the US or
Europe. In this paper we shall only consider the e¤ects of New York house prices, and
leave other extensions of the model to future research.

3.1 The Price Di¤usion Model with Higher Order Lags

For higher lag order processes, the model of the dominant region is given by

�p0t = �0s(p0;t�1 � �ps0;t�1) + a0 +
kX
`=1

a0`�p0;t�` +
kX
`=1

b0`��p
s
0;t�` + "0t (3.16)

and for the remaining regions by

�pit = �is(pi;t�1 � �psi;t�1) + �i0(pi;t�1 � p0;t�1) (3.17)

+ai +

kX
`=1

ai`�pi;t�` +

kX
`=1

bi`��p
s
i;t�` +

kX
`=0

ci`�p0;t�` + "it;

for i = 1; 2; :::; N . Combining (3.16) and (3.17), the full system of equations can be
written as

�pt = a+Hpt�1+
kX
`=1

(A` +G`)�pt�` +
kX
`=0

C`�pt�` + "t: (3.18)

Solving for price changes we have

�pt = �+�pt�1+
kX
`=1

�`�pt�` +R"t; (3.19)

where � = Ra with R = (IN+1 �C0)
�1;� = RH, as before, and

�` = R(A` +G` +C`).
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Writing (3.19) as a VAR in price levels

pt = �+

k+1X
`=1

�`pt�` +R"t; (3.20)

where �1 = IN+1 +�+ �1, �` = �` � �`�1 for ` = 2; :::; k, and �k+1 = ��k.
The generalised impulse response function for the ith region at horizon h is the same

as before and is given by (3.11), except that 	h must now be derived recursively using
the following generalization of (3.10):

	h =

k+1X
`=1

�`	h�`; for h = 0; 1; :::; (3.21)

with the initial values 	0 = IN+1, and 	h = 0, for h < 0.
Note that the equations (3.16) and (3.17) could have di¤erent lag-orders for each

terms for each region, kia, kib, kic, say. In the empirical section, we consider the case
in which these lag-orders are selected by an information criteria (IC), such as Akaike IC
(AIC) and Schwarz Bayesian Criterion (SBC). The heterogeneity of the lag orders across
regions and variable type can be accommodated by de�ning k = maxifkia; kib; kicg; and
then setting to zero all the lag coe¢ cients that are shorter than k.

3.2 Bootstrap GIRF Con�dence Intervals

As is well known the asymptotic standard errors of the estimated impulse responses are
likely to be biased in small samples. There is also the possibility of non-Gaussian shocks
that ought to be taken into account in small samples. For both of these reasons we
compute bootstrapped con�dence intervals for the estimates of gi(h), over h and i, to
evaluate their statistical signi�cance.
To this end denote the estimated model of (3.20) as pt = �̂+�k+1

`=1 �̂`pt�` + R̂"̂t,
and the estimated GIRF as bgi(h) = 	̂hR̂ �̂ei=

p
�̂ii. We generate B bootstrap samples

denoted by p(b)t ; b = 1; 2; :::; B, then compute bootstrap GIRF bg(b)i (h) for each p(b)t . Firstly,
the bth bootstrap samples are obtained recursively based on the DGP

p
(b)
t = �̂+

k+1X
`=1

�̂`p
(b)
t�` + R̂"̂

(b)

t ; (3.22)

where "(b)t = �̂1=2�
�(b)
t , where the elements of ��(b)t are random draws from the trans-

formed residual matrix, �̂�1=2("̂1; "̂2; :::; "̂T ), with replacement. The k + 1 initial obser-
vations are equated to the original data.
Secondly using the obtained bootstrap samples p(b)t , estimate the model (3.20), so

that the bth bootstrap GIRF is computed as

bg(b)i (h) = 	̂
(b)
h R̂

(b) �̂(b)eiq
�̂
(b)
ii

, h = 0; 1; :::; H; i = 0; 1; 2; :::; N: (3.23)

The 100(1� �)% con�dence interval is obtained as �=2 and 1� �=2 quantiles of bg(b)i (h)
for each h and i.
The bootstrap samples are generated from the price equations selected at the estima-

tion stage, namely with the same lag orders and restricted error correction terms.
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3.3 The Model with New York House Prices

The baseline model can also be easily extended to include other observable e¤ects such
as international and domestic factors. Here we focus on the former and extend the model
for London, (2.1), to include the New York house price changes, denoted by �pNY;t:

�p0t = �0s(p0;t�1 � �ps0;t�1) + �0NY (p0;t�1 � pNY;t�1) + a0 (3.1)

+a01�p0;t�1 + b01��p
s
0;t�1 + cNY;0�pNY;t + "0t

and the �pNY;t is modelled as

�pNY;t = aNY + aNY;1�pNY;t�1 + "NY;t: (3.2)

It is assumed that "0t and "NY;t are uncorrelated. This is not a restrictive assumption
since�pNY;t is already included in the London house price equation. As shown in Pesaran
and Shin (1999), by including a su¢ cient number of lagged changes of �pNY;t in (3.1)
one can ensure that the errors from the two equations are uncorrelated.
The extended model, when combined with the price equations for other regions in the

UK yields:
�pt = a+Hpt�1+(A1 +G1)�pt�1 +C0�pt + "t; (3.3)

where pt = (pNY;t; p0t; :::; pNt)0, a = (aNY ; a0; :::; aN)0, "t = ("NY;t; "0t; :::; "Nt)0,

H =

0BBBBBBB@

0 0 0 � � � 0 0
��0NY �0s + �0NY 0 � � � 0 0
0 ��10 �1s + �10 0 0 0
...

...
...

. . .
...

...
0 ��N�1;0 0 � � � �N�1;s + �N�1;0 0
0 ��N0 0 � � � 0 �Ns + �N0

1CCCCCCCA
�

0BBBBBBB@

0 00N+1
0 �0ss

0
0

0 �1ss
0
1

...
...

0 �N�1;ss
0
N�1

0 �Nss
0
N

1CCCCCCCA

A1 =

0BBBBB@
aNY;1 0 � � � 0 0
0 a01 0 0 0
...

...
. . .

...
...

0 0 � � � aN�1;1 0
0 0 � � � 0 aN1

1CCCCCA ;C0 =

0BBBBBBB@

0 0 0 � � � 0 0
cNY;0 0 0 � � � 0 0
0 c10 0 0 0 0
...

...
...
. . .

...
...

0 cN�1;0 0 � � � 0 0
0 cN0 0 � � � 0 0

1CCCCCCCA
;

G1 =

0BBBBBBB@

0 00N+1
0 b01s

0
0

0 b11s
0
1

...
...

0 bN�1;1s
0
N�1

0 bN1s
0
N

1CCCCCCCA
:

Therefore, we have
�pt = �+�pt�1+��pt�1 +R"t; (3.4)

where

� = Ra with R = (IN+2 �C0)
�1;

� = RH, � = R(A1 +G1).
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which as before leads to

pt = �+�1pt�1 +�2pt�2 +R"t (3.5)

As before the spatio-temporal properties of the model critically depend on the column
norms of the coe¢ cient matrices R, �1 and �2. We saw that with London being the
only dominant region only the �rst column of R was unbounded in N . For the present
extended model we have

R =

0BBBBBBBBB@

1 0 0 0 � � � 0 0
cNY;0 1 0 0 � � � 0 0
cNY;0c10 c10 1 0 � � � 0 0
cNY;0c20 c20 0 1 � � � 0 0
...

...
...
. . .

...
...
...

cNY;0cN�1;0 cN�1;0 0 0 � � � 1 0
cNY;0cN0 cN0 0 0 � � � 0 1

1CCCCCCCCCA
;

which has two dominant columns. But since New York a¤ects UK house prices only
through London, there is only one dominant region as far as UK house prices are con-
cerned, namely London. This is re�ected in the columns of R since the non-zero elements
of the second column are all proportional to the corresponding elements of the �rst col-
umn. Therefore, there is only one dominant unit driving UK house prices outside of
London. Similar considerations also applies to the dynamic transmission of shocks.
The transmission of shocks through the idiosyncratic errors, "it, i = NY; 0; 1; :::; N , is

characterised by the covariance matrix, �:

� =

0BBBBBBBBB@

�NY 0 0 0 � � � 0 0
0 �00 0 0 � � � 0 0
0 0 �11 �12 � � � �1;N�1 �1N
0 0 �21 �22 � � � �2;N�1 �2N
...

...
...

...
. . .

...
...

0 0 �N�1;1 �N�1;2 � � � �N�1;N�1 �N;N�1
0 0 �N1 �N2 � � � �N�1;N �NN

1CCCCCCCCCA
:

where it is assumed that � has bounded matrix column (row) norm.
Finally, weak exogeneity of �p0t and the signi�cance of the error correction terms in

the �pit equations for i = 1; 2; :::; N need to be tested as before.

4 Empirical Results

4.1 Regions and Their Connections

We apply the methodology described above to regional house prices (de�ated by the
general price level) in the UK using the quarterly mix-adjusted house price series collected
by the Nationwide Building Society.8 The panel data set covers quarterly real house price
changes over the period 1973q4 to 2008q2 for London and 11 regions.9

8The mix adjustment of the house price index is intended to correct for price variations due to location
and physical characteristics of the housing stock.

9See the Appendix A for data sources and other details.
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The de�nition of regions used by the Nationwide (Table 1) di¤ers in signi�cant ways
from the regional de�nitions used by the O¢ ce of National Statistics which are based on
the Nomenclature of Territorial Units for Statistics (NUTS) of the European Union. The
main di¤erences arise with the de�nition of the North, the North West, East Anglia and
the South East. The construction of the neighbourhood variables is described in Table 2.
The general principle in construction was to use physically contiguous regions. However,
that is not appropriate for London because the London Region is encircled �rst by the
Outer Metropolitan Region which in turn is encircled by the Outer South East. In this
case it may be inappropriate to rely solely on contiguity.
In general, contiguity can be a useful guide to determining the neighbours for each

region. However, the relationships between house prices in di¤erent regions also interact
with decisions to migrate and to commute. There are many ways in which information
about house prices in di¤erent towns and regions are disseminated.10 In this regard a
major factor in this process is migration and commuting. However, as pointed out by
Cameron and Muellbauer (1998) there are many barriers to mobility, especially because
of large di¤erences in the level of house prices in di¤erent regions (see also Barker, 2004).
Commuting provides a substitute such that at the margin the relative price of a property
of equivalent type (including an adjustment for di¤erent access to schools, countryside,
etc.) at two di¤erent locations will depend on the time and cost of commuting. The
extent of commuting within the UK can be seen from Table 3. This provides travel to
work areas for 2001 obtained from the 2001 Census.11 In terms of net �ows the table
reports the largest 10 areas by in�ow and the largest 10 areas by out�ow. London
receives by far the largest in�ow of workers each day with the large metropolitan cities
of Manchester, Leeds, Glasgow and Birmingham next. In terms of out�ows the three
largest areas are Chelmsford and Braintree, Maidstone and North Kent, and Southend
and Brentwood. Although some proportion of this could be to other areas, it is likely
that the main destination is London. In Table 4 we identify a number of towns around
London that have net out�ows. All are connected to London via high speed rail12, and
all are in the Outer Metropolitan or Outer South East region. Of a total of 261,584
identi�ed as commuting to outside of their town some 64% of commuters come from the
Outer Metropolitan Region. By contrast commuting into the other large cities is almost
exclusively from within the region in which the large cities are located. So because of
the connections between areas and London provided by commuting, we used the OM and
OSE regions as nearest neighbours to London.13

The neighbourhood connections in Table 2 with London connected to all regions forms
a star network with London at its central hub. The extent of the interconnection of each
region i can be measured by the degree of its centrality, ci, de�ned as the number of
regions with connections to region i divided by the total number of regions minus one.14

The degree of centrality of the regional house price network is given in Table 5. Perhaps
not surprisingly Scotland turns out to have the lowest degree of centrality (0:09) with

10For example, large chains of estate agents collate information on house prices across the country and
allow the easy comparison of houses in di¤erent locations.
11These are provided by the O¢ ce of National Statistics for England and Wales and by the General

Register O¢ ce for Scotland.
12For an empirical analysis of the e¤ect on house prices of easy access to public transport (both rail

and underground) see Gibbons and Machin (2005).
13The only other region that provides a signi�cant number of commuters to London (approximately

16,000 according to the 2001 Census) is the South West. See Piggott (2007).
14See, for example, Chapter 2 in Goyal (2007).
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London (by construction) the highest. Next most connected region is Outer South East
(0:55), followed by East Midland, North West, and West Midland (each with ci = 0:45).
After Scotland the least connected region turns out to be East Anglia (0:18) which is
nevertheless an important commuting region to London.
An alternative measure of connection for our purposes is commuting distances of the

various regions from London. This measure is particularly relevant given the central role
London house prices seem to play in the process of house price di¤usion. Therefore, we
consider ordering the regions (starting with London) according to their distance from
London in the analysis of spatial impulse responses that follows. Regional distances
from London are measured as geometrical average of distances from London to particular
towns and cities in each region. For example, the distance to the North West is taken
to be the geometrical average of the distance from London to Manchester, Liverpool
and Lancaster.15 Note that these distances are only used in our analysis to order the
regions with respect to London. Local averages used in the regressions are measures of
neighbourhood e¤ects that are de�ned in terms of contiguity and not in terms of distances.

4.2 Cointegrating Properties of UK House Prices

The logarithm of real house prices and their quarterly rates of change across the 12
regions are displayed in Figure 1. There is a clear upward trend in real house prices over
the 1974-2008 period, with prices in London and Outer Metropolitan areas rising faster
than other regions. The bottom panel of the graph displays the considerable variations
in house price changes that have taken place, both over time and across regions. It is also
interesting to note that volatility of real house price changes (around 3.5% per quarter)
are surprisingly similar across all the regions except for Scotland which is much lower
at around 2.7% per quarter. The average rate of price increases in Scotland has been
around 0.55% per quarter which is lower than the rate of increase of real house prices in
London (at around 0.76% per quarter), but is in line with the rate of price rises in many
other regions in the UK with much higher price volatilities.
The time series plots in Figure 1 suggest that the price series could be cointegrated

across the regions, a topic which has attracted considerable attention in the literature.
See, for example, Giussani and Hadjimatheou (1991), Alexander and Barrow (1994) and
Ashworth and Parker (1997). Two related issues are also discussed in the literature.
One concerns the possibility that house prices are convergent across regions, namely
that shocks that move regional house prices apart are temporary (Holmes and Grimes,
2008). As we shall see below this requires that house price pairs are cotrending as well
as cointegrating with coe¢ cients that are equal but of opposite signs. The second issue
relates to the so-called "ripple e¤ect" hypothesis, under which shocks that originate in the
London area and the South East fan out across the country, with the further away regions
being the last to respond to the shock (Giussani and Hadjimatheou, 1991, Peterson et
al., 2002).
Cointegration of regional house prices can be tested either jointly or pairwise. A

joint test would involve setting up a VAR in all of the 12 regional house price series and
then testing for cointegrating across all possible regions. This approach is likely to be
statistically reliable only if the number of regions under consideration is relatively small,
around 4-6, and the time series data available su¢ ciently long (say 120-150 quarters).

15Because of the concentric shape of the Outer Metropolitan and Outer South East regions we used a
much larger number of towns and cities to compute the average distance.
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The pairwise approach, developed in Pesaran (2007), can be used to test for cointegration
either relative to a baseline (or an average) price level or for all possible pairs of prices.
When applied to all possible pairs, the test outcome gives an estimate of the proportion
of price pairs for which cointegration is not rejected, as well as providing evidence on
possible clustering of cointegration outcomes. This approach is reliable when N and T
are both su¢ ciently large. The full pairwise approach has been recently applied to UK
house prices (over the period 1983q1-2008q4) by Abbott and de Vita (2009) who �nd no
evidence of long-run convergence across regional house prices in the UK. Given the focus
of our paper, namely the spatio-temporal nature of price di¤usion, the issue of whether
all regional house price pairs are cointegrating is of secondary importance. Clearly, our
analysis can be carried out even if none of the house price pairs are cointegrated by simply
setting the error correction coe¢ cients (�is and �i0) in (2.1) and (2.2) to zero for all i.
But it is important that cointegration is allowed for in cases where such evidence is found
to be statistically signi�cant.
With this in mind, and given our a priori maintained hypothesis that London can be

taken as the dominant region, in the left panel of Table 6 we present trace statistics for
testing cointegration between London and region i house prices, computed based on a
bivariate VAR(4) speci�cation in p0t and pit for i = 1; 2; :::; 11. The null hypothesis that
London house prices are not cointegrated with house prices in other regions is rejected at
the 10% signi�cance level or less in all cases, with the exception of the Outer Metropolitan,
Wales, North and Scotland. The test results for Wales and to a lesser extent for Outer
Metropolitan and North are marginal. Only in the case of Scotland do we �nd no evidence
of cointegration with London house prices.
Cointegration whilst necessary for long-run convergence of house prices is not su¢ -

cient. We also need to establish that house prices are cotrending and that the cointegrat-
ing vector corresponding to (pit; p0t) is (1;�1). The joint hypothesis that pit and p0t are
cotrending and their cointegrating vector can be represented by (1;�1) is tested using
the log-likelihood ratio statistic which is asymptotically distributed as a �22. To carry out
these tests we use bootstrapped critical values (given at the foot of Table 6) since it is
well known that the use of asymptotic critical values can lead to misleading inferences
in small samples.16 The joint hypothesis under consideration is rejected at the 10% level
only in the case of Outer South East and East Anglia. Once again, these rejections are
rather marginal and none are rejected at the 5% level. Together these test results support
the error correction formulations (2.1) and (2.2). This does not, however, mean that all
the error correction terms must be included in all the price equations. The evidence of
pairwise cointegration simply suggests that one or more of the error correction coe¢ cients
should be statistically signi�cant in one or both of the price equations in a given pair.
The estimates of the error correction coe¢ cients and their associated t-ratios for each

price pair involving London are summarized in Table 7. The right hand panel gives
the estimates for the London equation and the left panel for the other regions. As can
be seen none of the error correction terms is signi�cant in the London equation, whilst
they are signi�cant in the equations for all other regions, with the exception of Outer
Metropolitan, which seems to have very similar features to London. These results are
also compatible with London viewed as the dominant region. Prices in London are long
run forcing for all other regions (with the exception of the Outer Metropolitan), whilst
London is not long run forced by any other region. The concept of long-run forcing or
long-run causality was �rst introduced in Granger and Lin (1995) and later applied to

16See, for example, Garratt, Lee, Pesaran and Shin (2006, Section 9.3.1).
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cointegrating models in Pesaran, Shin and Smith (2000). It is to be distinguished from
the more familiar notion of "Granger causality" which does not even allow for short term
feedbacks from the non-causal to the causal regions.

4.3 Estimates of Regional House Price Equations

The regression results for a model in which London acts as the dominant region and there
is the possibility of error correcting towards London and towards neighbouring regions are
summarized in Table 8. Price equations for individual regions are estimated by ordinary
least squares (OLS) which yield consistent estimates under the weak exogeneity of the
London prices. For the London region there is no error correction term and London
house price changes are regressed on their lagged values and lagged values of average
house price changes in neighbouring regions. For the other 11 regions similar regressions
are estimated but with contemporaneous and lagged changes in London house prices also
included as additional regressors along with the error correction terms. Local averages
are constructed as simple averages of house price changes of the neighbouring regions as
set out in Table 2. The lag orders for each region is selected separately using the Schwarz
Bayesian criterion using a maximum lag order of 4. We also used an unrestricted model
of 4 lags in all variables, as well as using the Akaike criterion to select the lag orders and
found very similar results.17

Estimates for the error correction coe¢ cients, �i0 and �is in equation (3.17), are pro-
vided in columns 2 and 3 of Table 8. The estimates, �̂i0, refer to the error correction term
(pi;t�1 � p0;t�1) which capture the deviations of region i house prices from London, and
�̂is is associated with (pi;t�1� �psi;t�1); which gives the deviations of region ith house prices
from its neighbours. In line with the literature the evidence on convergence of house
prices across the regions is mixed. Considering the error correction terms measured rel-
ative to London we �nd that it is statistically signi�cant in �ve regions (East Anglia,
East Midlands, West Midlands, South West and North). By contrast, the error correc-
tion term measured relative to neighbouring regions is statistically signi�cant only in the
price equation for Scotland, with none of the error correction terms being statistically
signi�cant in the remaining six regions, which include, perhaps not surprisingly, the dom-
inant region, London and its surrounding regions Outer Metropolitan and Outer South
East. We are left with the three regions, Wales, Yorkshire and Humberside, and North
West, for which the absence of any statistically signi�cant error correcting mechanism
in their price equations is di¢ cult to explain. A number of factors could be responsible
for this outcome. The sample period might not be su¢ ciently informative in this regard,
or these regions might have di¤erent error correcting properties that our parsimonious
speci�cation can not take into account.
We now turn to the short-term dynamics and spatial e¤ects. To somewhat simplify

the reporting of the estimates, in columns 4-6 of Table 8 we report the sum of the lagged
coe¢ cients, with the associated t-ratios provided in brackets. Column 7 reports the con-
temporaneous impact of London on other regions. The estimates show a considerable
degree of heterogeneity in lag lengths and short term dynamics. Surprisingly, the own lag
e¤ects are rather weak and are generally statistically insigni�cant. Own lag e¤ects are
statistically signi�cant only in the regressions for the North. In contrast, the lagged price
changes from neighbouring regions are generally strong and statistically highly signi�-
cant, clearly showing the importance of dynamic spill-over e¤ects from the neighbouring

17These are available from the authors on request.
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regions.
The contemporaneous e¤ect of London house prices are sizeable and statistically sig-

ni�cant in all regions. The size of this e¤ect seems to be closely related to the commuting
distance of the region from London. Wales seems to be an exception although the rather
high contemporaneous e¤ects of London house price changes on Wales is partly o¤set by
the large negative e¤ect of lagged London price changes. It is also noticeable that the
direct e¤ect of London on the Outer South East and Wales is greater than the impact
on the Outer Metropolitan Region, even though this region is physically contiguous with
London.18

To ensure that the above results are not subject to simultaneity bias, we used the
Wu-Hausman statistic to test the null hypothesis that changes in London house prices
are exogenous to the evolution of house prices in other regions. The test statistics,
reported in the 8th column of Table 8, clearly show that the null can not be rejected.
This �nding is consistent with earlier evidence provided by Giussani and Hadjimatheou
(1991) who use cross-correlation coe¢ cients and Granger causality tests to show the
existence of a ripple e¤ect in house price changes starting in Greater London and spreading
to the North. But note that there are statistically signi�cant short-run feedbacks to
London house prices from its neighbouring regions. Therefore, London house prices are
"Granger caused" by its neighbouring house prices, although as noted above house prices
in London�s neighbouring regions are not long- run causal for London. Evidently, a
dominant region could be a¤ected by its neighbours in the short-run but not in the long-
run. Short-run feedbacks could be the result of forward looking behaviour on the part of
the neighbours, for example.

4.4 On the Choice of the Dominant Region

Thus far we have carried out our empirical analysis on the maintained assumption that
London is the dominant region. The results provided so far are in fact compatible with
this view. First, we have shown in Table 7 that London prices are long-run causal for all
regions with the exception of the Outer Metropolitan region. House prices in none of the
other regions are long-run causal for London. Also the hypothesis that contemporaneous
changes in London prices are weakly exogenous for house prices in all other regions can
not be rejected (as can be seen from Wu-Hausman statistics in Table 8). We have also
noted that the presence of short-term feedbacks to London from the neighbouring regions
is not incompatible with our maintained hypothesis.
However, it is also possible that there may be other forms of pair-wise dominance.

Scotland could be dominant for the North, for example. To shed light on such possibilities,
in Table 9 we allow each region in turn to be �dominant�and then use the Wu-Hausman
statistics to test the hypothesis that the assumed �dominant�region is weakly exogenous
for the other 11 regions. The �rst column of this table con�rms the earlier results that
London can be regarded as weakly exogenous for the other 11 regions. But the null
hypothesis that other regions are weakly exogenous is rejected, in the case of at least 2
regions. For some regions that are relatively remote from London the number of rejections
is much higher. It is also worth noting from the �rst row of Table 9 that prices changes
in none of the regions can be regarded as weakly exogenous in price equation for London.

18An inspection of the ratio of London house prices to prices elsewhere suggests that since the mid
1990s house prices in the Outer Metropolitan region have declined relative to London, though a similar
pattern is not apparent for other regions.

17



The weak exogeneity test results in Table 9 and the earlier test results of long-run causality
in Table 7 provide strong evidence in favour of London being the dominant region, with
the Outer metropolitan region being the second best candidate.19

4.5 A Common Factor Representation

As shown in Chudik and Pesaran (2009b) the VAR model with a dominant unit can
also be viewed as a VAR with a dynamic factor. Therefore, the price di¤usion model
proposed in this paper is also a dynamic factor model where the common factor is observed
and identi�ed as the London price level. But in reality unobserved common factors
could still be present in addition to the dominant unit(s). However, to test for such a
possibility requires N to be su¢ ciently large which is not the case in our application. An
alternative speci�cation would be to assume a common factor model without a dominant
unit where all regions are treated symmetrically and all price changes are related to
the same unobserved common factors. Under such an approach the common factors are
typically estimated as the principle components of the regional price series which again
requireN to be relatively large. It is not clear to us if such a strategy would be statistically
reliable in our application where N = 12. There is also the additional di¢ culty of how to
interpret the results based on common factors, since a pure common factor representation
would surely destroy the spatial features that we have managed to identify and estimate
within our set up.

4.6 Spatial-temporal Impulse Responses

The individual house price equations summarized in Table 8 present a rather complicated
set of dynamic and interconnected relations, with the parameter estimates only providing
a partial picture of the spatio-temporal nature of these relationships. For a fuller under-
standing we need to trace the time pro�le of shocks both over time and across regions.
Conventional impulse response analysis traces out the e¤ect of a shock over time where
the time series under examination is in�uenced by past values of itself and possibly other
variables. However, when we have a spatial dimension as well, dependence extends in
both directions, spatially and temporally (Whittle, 1954).
In Figure 2 we plot generalised impulse responses of the e¤ects of a positive unit shock

(one standard error) to London house prices on the level of house prices in London as well
as in the other 11 regions. Part A of this �gure shows the point estimates of the e¤ects
of the shock on the level of house prices across all the regions, whilst part B displays the
90% bootstrapped error bounds for each region separately.
The positive shock to London house prices spills over to other regions gradually raising

prices across the country. Generally the closer is the region to London the more rapid
the response to the shock. Scotland in particular, but also the North and the North
West take considerably longer to adjust to the shock. But the e¤ects eventually converge
across all the regions, albeit rather slowly in the case of some regions. The bootstrapped
error bounds also support this conclusion.
The spatio-temporal e¤ects of the London shock is better captured in Figure 3 where

the same information as in Figure 2 is plotted in terms of the change rather than the level
of house prices. In this �gure the responses to the London shock are plotted along the two

19The other main index of regional house prices, the Halifax, publishes a series for Greater London
that incorporates the Outer Metropolitan with London.
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dimensions with the regions ordered by distance from London. The rate of decay in the
time dimension is captured by the downhill direction going from right to left. Movement
initially along the ridge going from left to right captures the spatial pattern.
Another view of the results is provided in Figure 4 where the impulse response func-

tions for the price changes are plotted across regions (again ordered by their distance
to London) for di¤erent horizons, h = 0; 1; :::12: Figure 4 is a contour of the GIRF and
clearly shows the leveling o¤ of the e¤ect of the shocks over time and across regions. But
the decay along the geographical dimension seems to be slower as compared to the decay
along the time dimension. This important feature of the impulse response is best seen
in Figure 5 where the e¤ect of a unit shock to London house prices on London over time
are directly compared to the impact e¤ects of the same shock on regions ordered by their
distance from London. Broken lines are bootstrap 90% con�dence band of the GIRFs
for the regions. The decay of the impact e¤ects across regions is noticeably slower than
the time decay of the shock on London. It is also interesting that the lower bound of
the regional decay curve is systematically above the time decay curve for London, which
suggests that the di¤erence in the two rates of decay could be statistically signi�cant.

4.7 E¤ects of New York House Prices

We have found that London house prices are weakly exogenous for prices in other re-
gions, and long run causal. It is now interesting to ask if there are any exogenous drivers
for London house price. Why should exogenous shocks to UK house prices originate in
London? There are a number of possible reasons for this. London and its surrounding
regions account for the largest concentration of income and wealth in the country. Macro-
economic and �nancial shocks are likely to have their �rst e¤ects in London, due to the
role that London has played historically as one of the world�s �nancial centres. London�s
close links to New York as the pre-eminent �nancial centre in the global economy could
also be an important channel through which global �nancial shocks can travel to the rest
of the UK through London. With this in mind we also examined the possibility that
house prices in New York have an impact on London house prices.
The NY house price series we use is based on the Bureau of Labor Statistics�de�nition

of Metropolitan and non-metropolitan areas de�ated by the New York consumer price
index.20 The quarterly, time series of London and New York real house prices are shown
in Figure 6 allowing for the di¤erent scaling of the two series. There is a clear relationship
between the two house price series, with London prices tending to follow New York price
relatively closely. But, due to the non-stationary nature of real house price series one
needs to consider such visual relationships with care.21

Since quarterly data on New York house price series are available only from end of
1975 onwards, we re-estimated all the regional price equations over the sample period
1976q1-2008q2 so that the estimates for the extended model are all based on the same
sample information. The regression results are reported in Table 10. We �rst note that the
change in the estimation sample from 1973q4-2008q2 to 1976q1-2008q2 has not a¤ected
the estimates of the regional house prices and the results for these regions (reported under

20The areas included in the calculation of the NY house price series are the New York-White Plains-
Wayne Metropolitan Division comprises the counties of Bergen, NJ, Bronx, NY, Hudson, NJ, Kings,
NY, New York, NY, Passaic, NJ, Putnam County, NY, Queens, NY, Richmond, NY, Rockland, NY, and
Westchester, NY. For data sources and other details see Appendix A.
21For example, it is not possible to reject the hypothesis that the two price series contain unit roots.
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"Other UK Regions" in Table 10) are very similar to those reported in Tables 8.
Turning to the London price equation, we now focus on the extent to which London

prices are in�uenced by New York house prices. We �rst estimated an error correcting
regression for London with the term, p0;t�1 � pNY;t�1; included as one of the regressors.
But did not �nd the error correction term to be statistically signi�cant. We then consid-
ered if there were short-term feedbacks from New York to London, and run a regression
of London house price changes on lagged price changes in London and New York plus
the contemporaneous price change in New York. In all cases there is a statistically sig-
ni�cant lagged e¤ect of New York house prices on London even when we condition on
lagged neighbourhood e¤ects for London. It is also interesting that lagged e¤ects of New
York house price changes on London prices are quantitatively more important than the
contemporaneous e¤ect of New York house price changes on London.22

We also explored whether Paris as a major part of the market for real estate interna-
tionally, might a¤ect London house prices. However, using data from 1991 on apartment
prices for Paris, with the bordering departments of Hauts-de-Seine, Seine-Saint-Denis
and Val-de-Marne as contiguous regions, we did not �nd any role for Paris house prices
in explaining London house prices.
So far we have assumed that New York house price changes a¤ect UK regional house

prices only through London. But it might be argued that these e¤ects could be more
pervasive, possibly in�uencing all regions directly. To test this hypothesis in Table 11 we
give the F statistics for testing the joint signi�cance of the contemporaneous and lagged
e¤ects of New York house prices changes in all the UK regional price equations. In panel
A of the table the statistics are computed conditioning on the contemporaneous changes
in London house prices, whilst in panel B only contemporaneous changes in New York
house prices are included. When we condition on contemporaneous London prices the
test results are highly signi�cant only in the London equation. When contemporane-
ous London prices are excluded, New York house prices become signi�cant in London�s
neighbouring regions and East Anglia, but are statistically insigni�cant in other regions.
These test results taken together clearly show that New York house prices are signi�cant
drivers of house prices in the UK only through London.
To close the system (for the computation of impulse responses) we estimated a pure

autoregression in New York house price changes. The lag order was selected by SBC
which turned out to be 3. The estimates are given in Table 10 and show that New York
house price changes are highly persistent which is important for the way shocks transmit
from New York to London and then to the rest of UK. The impulse responses of a positive
unit shock to New York house prices on New York and London house price changes is
given in Figure 7 and show the highly persistent e¤ects of New York house price changes
on London. Initially the e¤ect of the shock is much more pronounced on New York,
but after one quarter the e¤ects of the New York shock are very similar for London and
New York, with the e¤ects persisting more in London than in New York, although the
di¤erences are not statistically signi�cant.
For completeness, we also computed the impulse responses of the e¤ects of a unit

shock to London house prices on the UK regions in the extended model with New York
House prices included in the London equation. The results are summarized in Figure
8. Not surprisingly these impulse responses are very similar to those given in Figure
2 for the baseline model without New York house prices. Note that in our model a

22We also considered including changes in the GBP/US$ rate in the London house price equation, but
did not �nd to be statistically signi�cant, largely due to its excessive volatility.
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shock to London house prices does not feedback to New York house prices. As a result
the di¤erences in impulse responses of a shock to London in the two models (with and
without New York prices) are only due to the di¤erences in the parameter estimates
across the two models. In the present application these di¤erences are rather small, thus
explaining the similarities of the impulse responses in Figures 2 and 8.
What is of greater interest is the impulse responses of a New York shock on the level

of regional house prices in the UK. The results of this shock scenario is given in Figure 9.
The impact e¤ects of the New York shock on UK house prices is very small, since changes
in New York house prices only a¤ect London prices directly and mainly with a lag. But
once London prices start to change, as the result of the New York shock, the e¤ects begin
to travel to the rest of the UK directly through the contemporaneous e¤ects of London
house prices on the rest of the UK as well as indirectly through the spatial inter-linkages.
The outcome is very similar to the regional impulse responses given in Table 8, with the
regions further away from London being initially less a¤ected, although all regional house
prices eventual convergence due to the dominant role that London plays in the di¤usion
of house prices in the UK.

5 Conclusions

This paper suggests a novel way to model the spatial and temporal dispersion of shocks
in non-stationary dynamic systems. Using UK regional house prices we establish that
London is a dominant region in the sense of Chudik and Pesaran (2009b) and moreover
that it is long run forcing in the sense of Granger and Lin (1995). House prices within
each region respond directly to a shock to London and in turn the shock is ampli�ed
both by the internal dynamics of each region and by interactions with contiguous regions.
Using this approach we can track the di¤usion of shocks using spatial-temporal impulse
responses. Furthermore, we identify an independent role for shocks to London coming
from developments in house prices in New York. These proxy the e¤ect of global �nancial
developments on house prices in London.
Modelling both the temporal (time series) and the spatial dimension at the same time

means that we modify the conventional impulse response analysis. With a spatial dimen-
sion as well, dependence is both temporal and spatial (Whittle, 1954). The results then
suggest that the e¤ects of a shock decay more slowly along the geographical dimension as
compared to the decay along the time dimension. When we shock London, the e¤ects on
London itself die away and are largely dissipated after two years. By contrast the e¤ects
of the shock to London on other regions takes much longer to dissipate, the further the
region is from London. This �nding is in line with other empirical evidence on the rate of
spatial as compared to temporal decay discussed in Whittle (1956), giving the examples
from variations of crop yields across agricultural plots, �ood height and responses from
population samples. A subject for further study is to see if this di¤erential pattern of
decay over time and space continues to prevail in other economic applications, not only
in the case of house price di¤usion, but also, for example, the di¤usion of technological
innovations using a suitable economic distance.
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Appendix A: Data Sources

Regional house prices (nominal, in British Pounds) in the UK are downloaded from the Homepage
of the Nationwide Building Society and covers the period 1973q4 to 2008q2

(http://www.nationwide.co.uk/hpi/historical.htm). The regional price series are then de�ated by
the UK consumer price index (nominal consumers� expenditure divided by constant price consumers�
expenditure) which is obtained from the O¢ ce of National Statistics. The New York house price index
covers the shorter sample period of 1975q4 to 2008q2 and is constructed using data from the Federal
Housing Finance Agency (FHFA). We use data for the New York-White Plains-Wayne Metropolitan Divi-
sion. (http://www.fhfa.gov/Default.aspx?Page=87). The New York house price index is then de�ated by
the consumer price index of New York-Northern New Jersey-Long Island, NY-NJ-CT-PA, obtained from
U.S. Bureau of Labor Statistics. The CPI data for New York is monthly (Series id: CUURA101SA0).
Quarterly indices are constructed as simple averages of the monthly series.
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Table 1: Regions, Abbreviations, and Data

Regions Abbrev. Regions Abbrev.

East Anglia EA Outer South East OSE
East Midlands EM Scotland S
London L South West SW
North N Wales W
North West NW West Midlands WM
Outer Metropolitan OM Yorkshire and Humberside YH

Source: Nationwide Homepage

Notes: The Nationwide de�nition of regions di¤ers from the ONS de�nition. The NW here ex-
cludes Cumbria which is added to the North East to comprise the North. The London region com-
prises the boroughs of London . The Outer Metropolitan region surrounds London and includes among
others, South Essex, Reading, St Albans, and Medway. The Outer South East includes North Es-
sex, Oxfordshire, Brighton, Southampton and Sussex. The map of de�nitions of regions is taken from
http://www.nationwide.co.uk/hpi/regions.htm.

Table 2: Regions and Neighbours

Regions (Abbrev.) Neighbours Regions (Abbrev.) Neighbours

East Anglia (EA) EM, OSE Outer South East (OSE)
EM;WM;EA;
OM;L; SW

East Midlands (EM)
Y H;NW;WM;
EA;OSE

Scotland (S) N

London (L) OSE, OM. South West (SW) WM, OSE, W
North (N) YH, NW, S Wales (W) NW, WM, SW

North West (NW)
N;Y H;EM;
WM;W

West Midlands (WM)
NW;EM;OSE;

SW;W
Outer Metropolitan (OM) EA, OSE, L Yorkshire & Humberside (YH) N, NW, EM
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Table 3: Largest Ten Travel to Work Areas
in terms of Net In�ows and Out�ows

TTWA Name Net In�ow(+) in % of Total Employment
London 410108 9.70

Manchester 80029 9.47
Leeds 48643 11.10
Glasgow 47934 9.27

Birmingham 36353 5.29
Edinburgh 34521 10.45
Aberdeen 23878 11.72
Liverpool 20009 5.18
Bristol 18144 4.14

Newcastle & Durham 13448 2.93

TTWA Name Net Out�ow(-) in % of Total Employment
Brighton -15264 -9.10

Warrington & Wigan -17331 -5.41
Luton & Watford -18971 -6.27
Portsmouth -20437 -7.99

Rochdale & Oldham -21271 -13.18
Lanarkshire -26901 -15.05

Wirral & Ellesmere Port -27605 -20.44
Chelmsford & Braintree -28300 -19.30
Maidstone & North Kent -35055 -15.15
Southend & Brentwood -41831 -19.26

Data Source: England & Wales: O¢ ce for National Statistics (ONS); Scotland: General Register O¢ ce for Scotland
(GROS); Northern Ireland Statistics and Research Agency (NISRA)

Table 4: Net Out�ows of Travel to Work Areas
in Outer South East and Outer Metropolitan Regions

Regions TTWA name Net Out�ow(-) in % of Total Employment
OSE Folkestone -4124 -11.00
OSE Dover -4292 -13.07
OSE Banbury -5507 -9.87
OSE Clacton -5871 -24.42
OSE Chichester & Bognor Regis -6712 -8.03
OSE Canterbury -6834 -9.92
OM Bedford -7756 -9.64
OSE Hastings -8052 -13.99
OSE Colchester -8083 -8.95
OSE Eastbourne -8327 -13.17
OSE Worthing -10312 -14.31
OM Stevenage -10676 -6.78
OM Harlow & Bishop�s Stortford -11304 -7.83
OM Guildford & Aldershot -14354 -4.08
OSE Brighton -15264 -9.10
OM Luton & Watford -18971 -6.27
OM Chelmsford & Braintree -28300 -19.30
OM Maidstone & North Kent -35055 -15.15
OM Southend & Brentwood -41831 -19.26

Data Source: England & Wales: O¢ ce for National Statistics (ONS); Scotland: General Register O¢ ce for Scotland
(GROS); Northern Ireland Statistics and Research Agency (NISRA)
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Table 5: Degree of Centrality of the Regional Network

Regions Degree of Centrality of Network (ci)
London 1.00
Outer South East 0.55
East Midland 0.45
North West 0.45
West Midland 0.45
North 0.27
Outer Metropolitan 0.27
South West 0.27
Wales 0.27
Yorkshire and Humberside 0.27
East Anglia 0.18
Scotland 0.09

Notes: The numbers reported are computed as ci = qi=N with N = 11 where qi is the number of regions with connections
to region i = 0; 1; :::; 11. For example, London price changes are connected to all the remaining regions, giving q0 = N .
Similarly, price changes of the North region are connected to YH, NW, and S regions, yielding qnorth = 3 (see Table 2)

Table 6: The Results of Trace Cointegration Tests with Unrestricted Intercepts and
Restricted Trend Coe¢ cients, and Tests of Over-identifying Restrictions in Bivariate
VAR(4) Models of Log of Real House Prices of London and Other UK Regions

(1974q4-2008q2)

Trace Statistic (r is the number
of cointegrating vectors)

H0 : Cointegrating Vector is (1,-1)

H0 : r = 0 vs
H1 : r � 1

H0 : r � 1 vs
H1 : r = 2

LR Statistic 95% BCV 90%BCV

Outer Metropolitan 20.04 7.34 10.44 15.04 12.74
Outer South East 25.03� 7.83 9.54� 11.34 9.11
East Anglia 27.07�� 9.62 9.86� 11.83 9.20
East Midlands 29.40�� 9.79 5.44 10.22 7.75
West Midlands 24.00� 8.90 3.62 10.94 8.60
South West 28.80�� 11.31� 2.13 9.96 7.99
Wales 22.67 6.68 5.03 11.14 8.86
Yorkshire & Humberside 23.56� 6.14 7.12 10.84 8.74
North West 23.09� 7.31 3.32 10.79 8.48
North 20.19 6.77 2.13 11.08 8.83
Scotland 16.92 4.04 1.83 11.37 9.49

Notes: The trace statistics reported are based on the bivariate VAR(4) speci�cation of log of real house prices of London
and other UK regions, with unrestricted intercepts and restricted trend coe¢ cients. The trace statistic is the cointegration
test statistic of Johansen (1991). The log-likelihood ratio (LR) statistic reported is for testing the cotrending restriction
with the cointegrating vector given by (1,-1) for the log house prices in London and the other region. For the trace test,
the 95% and 90% critical values of the test for H0 : r = 0 are 25.77 and 23.08, and those for H0 : r � 1 are 12.39 and
10.55, respectively. BCV stands for bootstrap critical values, which are based on 1000 bootstrap replications. �� signi�es
that the test rejects the null at the 5% level, and � at the 10% level. All statistics are computed using Micro�t 5 (Pesaran
and Pesaran, 2009).
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Table 7: Error Correction Coe¢ cients in Cointegrating Bivariate VAR(4) of Log of Real
House Prices of London and other UK regions (1974q4-2008q2)

Error Correction Equation
for London (p0t)

Error Correction Equation
for other Regions (pit)

Regions (i)
EC Coe¤.
�̂0i

t-ratio R
2 Serial
Correlation

EC Coe¤.
�̂i0

t-ratio R
2 Serial
Correlation

Outer Metropolitan -0.02 -0.35 0.41 10.76�� -0.03 -0.62 0.49 15.16���

Outer South East 0.02 0.50 0.40 6.84 -0.09�� -2.03 0.45 8.12�

East Anglia 0.03 0.85 0.37 6.08 -0.08�� -2.54 0.35 4.36
East Midlands 0.02 0.67 0.36 4.33 -0.08��� -3.36 0.43 1.42
West Midlands 0.01 0.33 0.39 3.87 -0.07��� -3.05 0.35 6.79
South West 0.01 0.18 0.41 2.76 -0.11��� -3.03 0.40 11.61��

Wales 0.01 0.55 0.38 7.45 -0.05��� -2.88 0.33 6.48
Yorkshire & Humberside 0.01 0.44 0.40 4.59 -0.04��� -2.90 0.31 17.98���

North West 0.00 0.20 0.37 4.94 -0.04��� -3.04 0.42 2.96
North -0.01 -0.42 0.37 9.88�� -0.05��� -3.05 0.21 1.26
Scotland -0.01 -0.71 0.40 3.53 -0.03��� -2.84 0.14 4.79

Notes: For the London equations "EC Coe¤." is the estimate of the coe¢ cient of the error correction term, �0i, in
�p0t = �0i(p0;t�1 � pi;t�1) + �3`=1a0i;`�p0;t�` + �3`=1b0i;`�pi;t�` + "0it. For other regions it is given by the estimate
of �i0 in the EC regressions, �pit = �i0(pi;t�1 � p0;t�1) + �3`=1ai0;`�p0;t�` + �3`=1bi0;`�pi;t�` + "i0t. Intercepts are
included in all the regressions. The associated t-ratios for the error correction coe¢ cients are given next to the coe¢ cients.
The �R2 is the adjusted R2. The column �Serial Correlation� reports the Breusch-Godfrey serial correlation test statistic
which is distributed approximately as �24 under the null of no residual serial correlation.

��� signi�es that the test rejects
the null at the 1% level , �� at the 5% level, and � at the 10% level.
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Table 8: Estimation Results of Region Speci�c House Price Di¤usion Equation with
London as a Dominant Region (1974q1-2008q2)

Lag-orders fk̂ia; k̂ib; k̂icg selected by SBC

Regions
EC1

(�̂i0)

EC2

(�̂is)

Own Lag

E¤ects

Neighbour

Lag E¤ects

London

Lag E¤ects

London

Contemporaneous

E¤ects

Wu-Hausman

Statistics
k̂ia k̂ib k̂ic

London � � 0:036
(0:246)

0:666�
(4:314)

� � 1 1 -

Outer Metropolitan � � �0:103
(�1:095)

0:354�
(4:107)

� 0:658���
(14:326)

1.018 1 1 0

Outer South East � � �0:158
(�1:349)

0:423�
(3:290)

� 0:746���
(15:017)

0.821 1 1 0

East Anglia �0:045��
(�2:002)

� �0:033
(�0:320)

0:271�
(2:158)

� 0:653���
(9:085)

-0.903 1 1 0

East Midlands �0:057���
(�3:475)

� �0:029
(�0:279)

0:808�
(5:184)

�0:501���
(�4:459)

0:523���
(8:525)

-0.694 1 2 2

West Midlands �0:061���
(�3:770)

� �0:203�
(�1:933)

0:791���
(4:952)

�0:442���
(�3:524)

0:498���
(7:043)

0.032 1 1 2

South West �0:113���
(�4:557)

� �0:026
(�0:249)

0:371���
(3:095)

�0:326���
(�2:744)

0:670���
(10:813)

-1.240 1 1 2

Wales � � �0:137
(�1:414)

1:319���
(7:777)

�0:757���
(�6:645)

0:661���
(9:455)

-0.895 1 3 3

Yorkshire & Humberside � � 0:180
(1:338)

0:561���
(3:834)

�0:333���
(�3:047)

0:577���
(7:252)

-1.874� 2 1 2

North West � � 0:061
(�0:470)

0:918���
(6:399)

�0:452���
(�5:757)

0:423���
(7:751)

0.054 3 2 2

North �0:039���
(�2:984)

� �0:213��
(�2:150)

0:750���
(5:074)

�0:235��
(�2:248)

0:266���
(3:078)

0.610 1 1 1

Scotland � �0:098���
(�4:232)

0:019
(0:202)

0:050
(0:640)

� 0:326���
(5:266)

-1.174 1 1 0

Notes: This table reports estimates based on the price equations �pit = �is(pi;t�1 � �psi;t�1) + �i0(pi;t�1 � p0;t�1) +

�
kia
`=1ai`�pi;t�` + �

kib
`=1bi`��p

s
i;t�` + �

kic
`=1ci`�p0;t�` + ci0�p0;t + "it; for i = 1; 2; :::; N . For i = 0, denoting the London

equation, we have the additional a priori restrictions, �00 = c00 = 0. �EC1�, �EC2�, �Own lag e¤ects�, �Neighbour lag
e¤ects�, �London lag e¤ects�, and �London contemporaneous e¤ects�relate to the estimates of �i0, �is, �

kia
`=1ai`, �

kib
`=1bi`,

�
kic
`=1ci`, and ci0, respectively. t-ratios are shown in the parenthesis.

��� signi�es that the test rejects the null at the 1% level
, �� at the 5% level, and � at the 10% level. The error correction coe¢ cients (�is and �i0) are restricted such that at least
one of them are statistically signi�cant at the 5% level. Wu-Hausman is the t-ratio for testing H0 : �i = 0 in the augmented
regression �pit = �is(pi;t�1� �psi;t�1)+�i0(pi;t�1�p0;t�1)+�

kia
`=1ai`�pi;t�`+�

kib
`=1bi`��p

s
i;t�`+�

kic
`=0ci`�p0;t�`+�i"̂0t+

"it;, where "̂0t is the residual of the London house price equation, and the error correction coe¢ cients are restricted as
described above. In selecting the lag orders, kia; kib; and kic the maximum lag-order is set to 4. All the regressions include
an intercept term.
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Table 9 Wu-Hausman Statistics for Testing the Exogeneity of House Prices of the As-
sumed Dominant Region

Assumed Dominant Region
L OM OSE EA EM WM SW W YH NW N S

L � 1.94� 3.46��� 2.03�� 3.60��� 2.66��� 2.22�� 2.05�� 2.28�� 3.32��� 3.50��� 1.71�

OM 1.02 � 2.35�� 1.78� 4.64��� 0.79 1.70� 1.45 2.55�� 3.46��� 3.95��� 1.87�

OSE 0.82 1.68� � 1.17 4.26��� 3.33��� 2.45�� 1.79� 2.87��� 2.53�� 5.46��� 1.87�

EA -0.90 0.20 1.30 � 2.25�� 4.07��� 2.77��� 0.33 3.62��� 3.25��� 4.00��� 1.65�

Price EM -0.69 1.12 2.02�� 1.46 � -1.35 -2.14�� -4.39��� 1.41 1.32 3.54��� -0.12
Equation WM 0.03 -0.25 1.10 0.98 1.00 � -0.37 -1.22 0.40 1.41 2.34�� 0.02

SW -1.24 -1.28 -0.37 -0.85 -1.01 2.65��� � 2.06�� 0.38 1.15 2.89��� 0.12
W -0.90 0.70 1.72� -0.85 2.37�� 0.50 0.79 � -0.63 0.06 0.10 -2.44��

YH -1.87� -0.01 1.28 -0.17 2.50�� -0.60 -1.61 -0.55 � -1.92� 2.86��� 1.29
NW 0.05 1.91� -0.38 1.53 4.30��� 2.20�� 1.70� 0.31 -0.69 � 1.30 1.09
N 0.61 2.11�� 1.13 0.60 4.04��� 0.80 1.47 -0.62 1.26 0.76 � -1.24
S -1.17 1.28 -0.10 -0.31 0.48 -1.57 -0.26 0.98 -1.04 1.73� -0.59 �

Notes: The Wu-Hausman statistic is computed as the t-ratio for testing H0 : �i = 0 in the augmented regression �pit =
�is(pi;t�1 � �psi;t�1) + �i0(pi;t�1 � p0;t�1) + �

kia
`=1ai`�pi;t�` + �

kib
`=1bi`��p

s
i;t�` + �

kic
`=0ci`�p0;t�` + �i"̂0t + "it, where

"̂0t is the residual of the house price equation for the assumed dominant region. The error correction coe¢ cients (�is
and �i0) are restricted so that at least one is statistically signi�cant (see also the notes of Table 8). In order to avoid
perfect multicollinearity, only one error correction term is included for the equation of Scotland when North is the assumed
dominant region. ��� signi�es that the test is signi�cant at the 1% level (absolute values larger than 2.576), ** at the
5% level (absolute values larger than 1.960), and * at the 10% level (absolute values larger than 1.645). In selecting the
lag orders, SBC is used and the maximum lag-order is set to 4. All regressions include an intercept. See Table 2 for the
regional mnemonics and a list of neighbours.
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Table 10: E¤ects of New York House Price Changes on London, with London Treated as
the Dominant Region in the UK (1976q1-2008q2)

Lag-orders fk̂ia; k̂ib; k̂ic; k̂i;NY g selected by SBC

Regions (i)
EC1

(�0;NY )
EC2
(�0s)

Own Lag
e¤ects

Neighbour
Lag E¤ects

New York
Lag E¤ects

New York
Contemporaneous

E¤ects

Wu-Hausman
Statistics

k̂ia k̂ib k̂i;NY

New York � � 0:764���
(8:560)

� � � � 3 - -

London � � �0:094
(�0:641)

0:583���
(3:839)

0:316���
(2:745)

0:278��
(2:445)

-0.139 1 1 1

Other UK Regions
EC1
(�̂i0)

EC2
(�̂is)

Own Lag
E¤ects

Neighbour
Lag E¤ects

London
Lag E¤ects

London
Contemporaneous

E¤ects

Wu-Hausman
Statistics

k̂ia k̂ib k̂ic

Outer Metropolitan � � �0:118
(�1:217)

0:370���
(4:178)

� 0:656���
(13:944)

-0.481 1 1 -

Outer South East � � �0:153
(�1:270)

0:410���
(3:103)

� 0:744���
(14:583)

-0.527 1 1 0

East Anglia �0:044�
(�1:904)

� �0:041
(�0:384)

0:275��
(2:083)

� 0:660���
(8:867)

-1.398 1 1 0

East Midlands �0:057���
(�3:412)

� �0:039
(�0:361)

0:824���
(5:099)

�0:501���
(�4:357)

0:513���
(8:101)

0.600 1 2 2

West Midlands �0:056���
(�3:930)

� 0:000
(0:001)

0:583���
(3:866)

�0:425���
(�3:810)

0:492���
(7:793)

1.716� 1 1 2

South West �0:113���
(�4:429)

� �0:045
(�0:421)

0:400���
(3:167)

�0:339���
(�2:773)

0:681���
(10:601)

-0.467 1 1 2

Wales � � �0:181�
(�1:804)

1:429���
(8:001)

�0:769���
(�6:666)

0:672���
(9:368)

0.549 1 3 3

Yorkshire & Humberside � � �0:065
(�0:605)

0:641���
(4:601)

� 0:458���
(6:438)

1.617 1 1 0

North West � � �0:072
(�0:726)

1:034���
(8:048)

�0:472���
(�5:743)

0:428���
(7:446)

1.232 1 3 2

North �0:040���
(�2:948)

� �0:223��
(�2:200)

0:751���
(4:954)

�0:240��
(�2:228)

0:256���
(2:860)

2.207�� 1 1 1

Scotland � �0:103���
(�4:360)

0:009
(0:087)

0:046
(0:587)

� 0:334���
(5:156)

0.828 1 1 0

Notes: The table report the estimates of the autoregressive model of New York real house price changes, �pNY;t =

�
kNY
`=1 aNY;`�pNY;t�`+ "NY;t, the London house price changes, �p0t = �0s(p0;t�1� �p

s
0;t�1)+�0;NY (p0;t�1� pNY;t�1)+

�k0a`=1a0`�p0;t�`+�
k0b
`=1b0`��p

s
0;t�`+�

k0;NY

`=0 cNY `�pNY;t�`+ "0t, with the remaining regional price equations as speci�ed
at the foot of Table 8. The di¤erences between the results reported for regional equations in this table and those reported
in Table 8 are due only to the di¤erences in the estimation sample. For the lag order selection the maximum lag-order of
the autoregression of �pNY;t and the regressions of �pit, i = 0; 1; :::; N , are set to 8 and 4, respectively.
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Table 11: F Statistics for Joint Signi�cance of Contemporaneous and Lagged E¤ects of
New York House Price Changes in the UK Regional House Price Equations

A: With Contemporaneous London House Price Changes
Regions F Statistics p-values

London 5.323 0.000
Outer Metropolitan 0.564 0.640
Outer South East 1.499 0.219
East Anglia 0.531 0.662
East Midlands 0.570 0.636
West Midlands 2.585 0.057
South West 0.798 0.498
Wales 0.784 0.505
Yorkshire & Humberside 0.685 0.563
North West 0.858 0.465
North 0.386 0.763
Scotland 1.522 0.213
B: Without Contemporaneous London House Price Changes

Regions F Statistics p-values
London 5.323 0.000
Outer Metropolitan 2.479 0.065
Outer South East 3.456 0.019
East Anglia 2.844 0.041
East Midlands 0.597 0.618
West Midlands 0.036 0.991
South West 1.772 0.156
Wales 0.851 0.469
Yorkshire & Humberside 0.930 0.429
North West 0.316 0.814
North 0.196 0.899
Scotland 1.060 0.369

Notes: The F statistics are for testing the joint hypothesis H0 : ci;NY;` = 0; for ` = 0; 1; 2, in the region-speci�c equations.
The statistics in panel A are based on the regressions: �pit = intercept + �is(pi;t�1 � �psi;t�1) + �i0(pi;t�1 � p0;t�1) +
�2`=1ai`�pi;t�` + �2`=1bi`��p

s
i;t�` + �2`=0ci`�p0;t�` + �2`=0ci;NY;`�pNY;t�` + "it, for i = 1; 2::::; 11. In panel B the

F statistics are computed using the same regressions except that contemporaneous change in London prices (�p0;t) is
excluded from the regression. For London the regression equation used to compute the F statistic is given by �p0t =
intercept+�2`=1a0`�p0;t�` +�

2
`=1b0`��p

s
0;t�` +�

2
`=0ci;NY;`�pNY;t�` + "it, which is the same in both panels. The error

correction coe¢ cients (�is, and �i0) are restricted as before (see the notes to Table 8). The p-values for the tests are given
in the last column.
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Figure 1: UK Real House Prices by Regions
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Figure 2: Generalised Impulse Responses of a Positive Unit (one s.e.) Shock to London
House Prices

(a) GIRFs for All Regions

(b) GIRFs for Each Region with the 90% Bootstrap Error Bounds

Notes: Figures show that the mean estimates (solid line) with 90% bootstrap error bounds (broken line, based on 10000 boot-
strap samples) in the case of the model without New York price changes: �pit = �is(pi;t�1� �psi;t�1)+�i0(pi;t�1�p0;t�1)+
�
kia
`=1ai`�pi;t�` +�

kib
`=1bi`��p

s
i;t�` +�

kic
`=1ci`�p0;t�` + "it;for i = 0; :::; N , including an intercept. Lag-orders fk̂ia; k̂ib; k̂icg

are selected by SBC. The restrictions of error correction terms, which are explained in the note to Table 8 (see the notes
therein), as well as selected lag-orders by SBC are imposed in the estimation in bootstrap procedure.
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Figure 3:

Notes:The regions are ordered by distance from London. See also notes to Figure 2. See Table 2 for the abbreviations of
regions and their neighbours.

Figure 4:

Notes: The regions are ordered by distance from London. See also notes to Figure 2. See Table 2 for the abbreviations
of regions and their neighbours.
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Figure 5:

Notes: This �gure shows the e¤ect of a unit shock to London house prices on London over time, and the impact e¤ects
of the same shock on regions ordered by their distance from London. Broken lines are bootstrap 90% con�dence band
of the GIRFs for the regions, based on 10000 bootstrap samples. See Table 2 for the abbreviations of regions and their
neighbours.
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Figure 6:
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Figure 7:

Note: See the notes to Table 10.
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Figure 8: Generalised Impulse Responses of a Positive Unit (one s.e.) Shock to London
House Prices in the Model with New York House Prices

(a) GIRFs for All Regions

(b) GIRFs for Each Region with the 90% Bootstrap Error Bounds

Notes: Figures show that the bootstrap mean estimates (solid line) with 90% bootstrap error bounds (broken line, based on
10000 bootstrap samples) in the case of the model with New York house price: which is a system of the autoregresive model
of changes in New York house prices, �pNY;t, the London house prices, �p0t = �0s(p0;t�1 � �ps0;t�1) + �0;NY (p0;t�1 �

pNY;t�1) +
k0aP̀
=1
a0`�p0;t�` +

k0bP̀
=1
b0`��p

s
0;t�` +

k0cP̀
=0
cNY `�pNY;t�` + "0t, and the price equations for the remaining regions:

�pit = �is(pi;t�1 � �psi;t�1) + �i0(pi;t�1 � p0;t�1) +
kiaP̀
=1
ai`�pi;t�` +

kibP̀
=1
bi`��p

s
i;t�` +

kicP̀
=0
ci`�p0;t�` + "it;for i = 0; :::; N ,

including an intercept. Lag-orders fk̂ia; k̂ib; k̂icg are selected by SBC. For the lag order selection the maximum lag-order
of autoregression of �pNY;t and the regression of �pit, i = 0; 1; :::; N , are set to 8 and 4, respectively. The restrictions of
error correction terms, which are explained in the note to Table 7 (see the notes therein), as well as selected lag-orders by
SBC are imposed in the estimation in bootstrap procedure.
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Figure 9: Generalised Impulse Responses of a Positive Unit (one s.e.) Shock to New
York House Prices in the Model with New York House Prices

(a) GIRFs for All Regions

(b) GIRFs for Each Region with the 90% Bootstrap Error Bounds

Notes: Figures show that the bootstrap mean estimates (solid line) with 90% bootstrap error bounds (broken line, based
on 10000 bootstrap samples) of the New York model, which is a system of the autoregresive model of changes in New

York house prices, �pNY;t, the London house prices, �p0t =
k0aP̀
=1
a0`�p0;t�` +

k0bP̀
=1
b0`��p

s
0;t�` +

k0cP
r=0

cNY r�pNY;t�r + "0t,

and the price equations for the remaining regions: �pit =
kiaP̀
=1
ai`�pi;t�` +

kibP̀
=1
bi`��p

s
i;t�` +

kicP
r=0

ci0r�p0;t�r + "it, for

i = 1; 2; :::; N . All regressions include an intercept. For the lag order selection the maximum lag-order of autoregression
of �pNY;t and the regression of �pit, i = 0; 1; :::; N , are set to 8 and 4, respectively. The restrictions of error correction
terms, which are explained in the note to Table 7 (see the notes therein), as well as selected lag-orders by SBC are imposed
in the estimation in bootstrap procedure.
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